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CHAPTER 1

About This Document

This document provides information for porting the Sun Microsystems reference 
implementation of the K Virtual Machine (KVM) to a new platform.
1
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CHAPTER 2

Introduction to KVM

KVM (also known as the K Virtual Machine or as the KJava Virtual Machine) is a 
compact, portable Java™ virtual machine intended for small, resource-constrained 
devices such as cellular phones, pagers, personal organizers, mobile Internet devices, 
point-of-sale terminals, home appliances, and so forth.

The high-level design goal for KVM was to create the smallest possible “complete” 
Java virtual machine that would maintain all the central aspects of the Java 
programming language, and that would nevertheless run in a resource-constrained 
device with only a few tens or hundreds of kilobytes of available memory (hence the 
name K, for kilobytes). More specifically, KVM is designed to be

� small, with a static memory footprint of the virtual machine core in the range 
40 kilobytes to 80 kilobytes (depending on the target platform and compilation 
options),

� clean and highly portable,

� modular and customizable,

� as “complete” and “fast” as possible without sacrificing the other design goals.

KVM is implemented in the C programming language, so it can easily be ported 
onto various platforms for which a C compiler is available. The virtual machine has 
been built around a straightforward bytecode interpreter with various compile-time 
flags and options for helping porting efforts and space optimization.

KVM has been developed as part of a larger effort to provide a modular, scalable 
architecture for the development and deployment of portable, dynamically 
downloadable and secure applications in consumer and embedded devices. This 
larger effort is called the Java 2 Micro Edition (also known as Java 2 ME or J2ME). 

Further information on KVM and Java 2 Micro Edition is available in separate 
documents (The K Virtual Machine (KVM), A White Paper, KVM Technical Specification, 
and Connected, Limited Device Configuration Specification, Java Community Process, 
Sun Microsystems, Inc.). 
3



KVM is derived from a research system called Spotless developed originally at Sun 
Microsystems Laboratories. More information on the Spotless system is available in 
the Sun Labs technical report The Spotless system: implementing a Java system for the 
Palm connected organizer.
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CHAPTER 3

Compiler Requirements

You must have a C compiler capable of compiling ANSI-compliant C files. Your 
compiler must define the basic C types as shown below in Table 3-1.

If your J2ME configuration or profile supports floating point numbers, your 
compiler must support the floating point types shown below in Table 3-2.

TABLE 3-1 Basic types

Type Description

char An 8-bit quantity. It can be signed or unsigned

signed char A signed 8-bit quantity.

unsigned char An unsigned 8-bit quantity

short A signed 16-bit quantity.

unsigned 
short

An unsigned 16-bit quantity

int A signed quantity. It is either 16 or 32 bits.

unsigned int A unsigned quantity. It is either 16 or 32 bits.

long A signed 32-bit quantity

unsigned long An unsigned 32-bit quantity.

void * A 32-bit pointer

TABLE 3-2 Floating Point types

Type Description

float A 32-bit floating point value

double A 64-bit floating point value.
5



All KVM implementations support the Java type long1. It is preferable that your 
compiler support 64-bit integers; however this is not a requirement. Porting the Java 
type long is discussed in Chapter 9, “64-bit Support.”

Your compiler must have some means of indicating additional directories to be 
searched for “includes” of the form:

#include <filename>

Our reference implementation has only been tested on machines with 32-bit pointers 
and that do not require “far” pointers of any sort. We do not know if it will run 
successfully on platforms with pointers of other sizes.

The codebase has been successfully compiled with the following compilers:

� Metrowerks CodeWarrior Release 6 for Palm,

� Sun DevPro C Compiler 4.2 on Solaris,

� GNU C compiler on Solaris,

� Microsoft Visual C++ 6.0 Professional on Windows 98 and Windows NT 4.0.

The only non-ANSI feature in the source code is its use of 64-bit integer arithmetic.

1. Note that in Java, the type long is always 64 bits. Table 1 assumes that, as in most current C implementations, 
the type long represents a 32-bit quantity. This document uses the phrase “The Java type long” to refer to the 
64-bit meaning.
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CHAPTER 4

Directory Structure

4.1 Overview
Unzip the distribution into any directory of your choice. It creates a directory with 
the following subdirectories:

� api
� bin
� build
� docs
� jam
� kvm
� samples
� tools

The contents of these directories are detailed in TABLE 4-1.

TABLE 4-1 Distribution directories

Subdirectory Description

api Contains the Java library class source code that is provided with 
the release.

bin Contains all the binary executables and compiled Java library 
classes.

build Contains makefiles for building the KVM.

doc Contains documentation.

jam Contains the source code of the optional Java Application 
Manager (JAM) component that is provided with the KVM.
7



4.2 Directory kvm/VmCommon
All common, platform-independent source code of KVM is located in the directory 
kvm/VmCommon/src/. All common include files are in the directory 
kvm/VmCommon/h/.

Port specific source and include files should go into the directories 
kvm/VmPort/src/ and kvm/VmPort/h/, where Port is replaced by the name of 
your platform (e.g., kvm/VmWin, kvm/VmPilot, kvm/VmLinux.)

Some ports may choose to create a kvm/VmPort/build/ subdirectory which holds 
files that are part of the build process, but are not part of the source code per se.

TABLE 4-2 gives an overview of the KVM source code files contained in 
kvm/VmCommon/src/ and kvm/VmCommon/h/.

kvm Contains the source code of KVM.

samples Contains the source code and icons of a number of sample 
applications.

tools Contains the source code and icons of a number of tools 
(JavaCodeCompact, preverifier, Palm tools) that are provided 
with this release.

TABLE 4-2 Files in VmCommon

File Description

StartJVM.c Virtual machine startup and command line argument reading.

cache.h
cache.c

Inline caching operations for speeding up method lookup.

class.h
class.c

Runtime data structures and operations for representing Java 
classes.

events.h
events.c

Implementation of a stream-based protocol for event handling.

fields.h
fields.c

Runtime data structures and operations for representing fields 
of objects.

frame.h
frame.c

Stack frame and exception handling operations.

TABLE 4-1 Distribution directories

Subdirectory Description
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garbage.h
garbage.c

Garbage collector and memory management.

global.h
global.c

Miscellaneous global variables.

hashtable.h
hashtable.c

Hashtable implementation that is used internally by the virtual 
machine.

interpret.h
interpret.c

Bytecode interpreter.

jar.h
jarint.h
jartables.h
jar.c

Jar file reader.

loader.h
loader.c

Class loader.

log.h
log.c

Logging/diagnostic operations for debugging and profiling.

long.h Special macros to handle 64-bit operations in a portable fashion.

main.h Compilation flags and system-wide definitions.

native.h
native.c
nativeCore.c

Native function table operations and core native library 
functions.

pool.h
pool.c

Runtime data structures and operations for representing 
constant pools.

profiling.h
profiling.c

Data declarations and operations for profiling virtual machine 
execution.

property.c Operations for accessing Java system properties.

rom.h Macros needed by the ROMizer (JavaCodeCompact).

runtime.h Definition of certain runtime functions that are commonly 
overridden by ports.

thread.h
thread.c

Runtime data structures and operations for Java thread 
management and multithreading.

verifier.h
verifier.c

Classfile verifier (see Chapter 12 for details).

TABLE 4-2 Files in VmCommon

File Description
Chapter 4 Directory Structure 9



4.3 Directory kvm/VmExtra
The directory kvm/VmExtra/ contains additional components that are potentially 
useful to a large number of ports. These files include support for the “Spotlet” 
application model inherited from the Spotless JVM (precursor of KVM), an 
implementation of the most commonly needed networking protocols for Windows, 
and an implementation of an experimental storage protocol that uses the new 
Generic Connection framework. 

Also the directory defines some additional macros for asynchronous event handling, 
and defines the low-level file operations and virtual machine startup operations 
needed on non-embedded target platforms such as Windows and Solaris.

A description of the VmExtra files is provided in TABLE 4-3.

TABLE 4-3 Files in VmExtra

File Description

async.h Macros for supporting asynchronous notification (see 
Section 10.3, “Asynchronous native methods” and Section 11.1.4, 
“Asynchronous notification”).

loaderFile.c Low-level binding between the file system, class loader and JAR 
reader for those platforms that have a “real” file system.

main.c Default main program for those platforms that have a file 
system and support VM startup from a command line.

nativeSpotlet.h
nativeSpotlet.c

Low-level event handling and graphics code needed for 
supporting the Spotlet application model inherited from 
Spotless JVM (precursor of KVM). Most of the necessary event 
handling operations in KVM are now done using alternative 
mechanisms (see event.c).

network.c
networkPrim.h
networkPrim.c

Implementation of most commonly used network protocols for 
Windows.

resource.c Implementation of a stream-based protocol for reading external 
resources.

storage.h
storage.c
storagePrim.c

Experimental implementation of a protocol for accessing storage 
systems in a generalized way.
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CHAPTER 5

Required Port-Specific Files and 
Functions

This section describes those files and functions that must be defined for each port.

5.1 File machine_md.h
Every port must provide a file named VmPort/h/machine_md.h. The purpose of 
this file is to override the default compile time definitions and declarations provided 
in VmCommon/h/main.h, and supply any additional definitions and declarations 
that your specific platform might need. See Chapter 6, “Compilation Flags, 
Definitions and Macros” for a list of the definitions and declarations that your port 
will often need to override.

All port-specific declarations, function prototypes, typedef statements, #include 
statements, and #define statements must appear either in this machine_md.h, in a 
file included directly or indirectly by machine_md.h, in some file automatically 
included by your development environment,1 or via compiler switches.2

Port-specific functions can appear in any machine-specific file. Unless otherwise 
stated, any required port-specific function can also be defined as a macro, provided 
that its implementation is careful to ensure that each argument is evaluated exactly 
once.

1. Metrowerks, for example, allows the user to create a prefix file.

2. Some compilers allow you to add the switch -Dname=value, which is equivalent to putting
#define name value

at the start of the file.
11



5.2 File main.c
You will generally need to provide a new version of main.c that is suitable for your 
target platform. The default KVM implementation provided in directory 
VmExtra/src/main.c can be used as a starting point for platform-specific 
implementations. Refer to Chapter 7, “Virtual Machine Startup,” for further 
information.

5.3 Runtime functions that require porting 
efforts
Each port must define the functions given below. They may be defined as either 
macros or as C code. Traditionally, the C code is placed in a file named 
VmPort/src/runtime_md.c

� void AlertUser(const char* message)
Alert the user that something serious has happened. This function call usually 
precedes a fatal error.

� cell *allocateHeap(long *sizeptr, void **heapPtrPtr)
Create a heap whose size (in bytes) is approximately the long value *sizeptr. 
The heap must begin at an address that is a multiple of 4. The address of the heap 
is returned as the value of this function. The actual size of the heap (in bytes) is 
returned in *sizeptr. The value placed into *realresultptr is used as the 
argument to freeHeap when freeing the heap.
For most ports, *heapPtrPtr will be set to the actual value returned by the 
native space allocation function. If this value is not a multiple of 4, it is rounded 
up to the next multiple of 4, and *sizeptr is decreased by 4.

� void freeHeap(void *heapPtr)
Free the heap space that was allocated using allocateHeap. See above for the 
meaning of the heapPtr argument.

� GetNextKVMEvent(KVMEventType *evt, bool_t forever, ulong64
waitUntil)
This function serves as an interface between the event handling capabilities of the 
virtual machine and the host operating system. See Chapter 11 for details.

� void InitializeVM(int *argc, char **argv)
Initialize the virtual machine in whatever way is necessary. On many of the 
current ports, this is a macro that does nothing.
12 KVM Porting Guide • May 19, 2000



� void InitializeNativeCode(int *argc, char **argv)
Initialize the native code in whatever way is necessary. Ports can use this function 
(for example) to initialize the window system and to perform other native-code 
specific initialization.

� void FinalizeVM()
Perform any cleanup necessary before shutting down the virtual machine.

� void FinalizeNativeCode()
Perform any clean up necessary to clean up after the native functions. Many ports 
use this function to shut down the window system.

� ulong64 CurrentTime_md(void)
Return the time, in milliseconds, since January 1, 1970 UTC. On devices that do 
not support the concept of time zone, it is acceptable to return the time, in 
milliseconds, since January 1, 1970 of the current time zone. 

The functions InitializeVM and InitializeNatives are called, in that order, 
before any global variables have been set and before the memory-management 
system has been initialized. Each of these functions is passed a pointer to the argc 
and argv that were originally given to the StartJVM() function. These functions 
can modify the argument count and argument vector, if they so choose.

The function FinalizeVM() is called just before FinalizeNativeCode(). On 
those ports that have enabled profiling, the profiling information is printed out 
between the calls to these two functions. This allows the profiler to find out 
information about the window system, if necessary, and to use the window system 
for creating its output.

Asynchronous native functions. If your port supports the use of asynchronous 
native methods, there are additional, port-specific functions that you must define:

yield_md()
CallAsynchronousFunction_md()
enterSystemCriticalSection()
exitSystemCriticalSection()

These functions are described in §10.3.

5.4 Required C library functions
The KVM uses the following C library functions:

� String manipulation: strcat, strchr, strcmp, strcpy, strncpy, strlen
� Moving memory: memcpy, memove, memset, memcmp
� Printing: atoi, sprintf, fprintf, putchar
� Exception handling: setjmp, longjmp (not absolutely necessary)
Chapter 5 Required Port-Specific Files and Functions 13



If your development environment does not supply definitions for these functions, 
you must either define them yourself, or use macros to map these names onto 
equivalent functions recognized by your development environment.1

The function memmove must be able to handle situations in which the source and 
destination overlap. The function memcpy is used only in those cases in which the 
source and destination are known not to overlap.

The functions fprintf and sprintf use only the following formats:
%s, %d, %o, %x, %ld, %lo, %lx, %%

These formats never have options or flags.

There are no calls directly to printf.

Note – The components included in directory VmExtra, the machine-specific ports 
provided with this release, and the optional Java Application Manager (JAM) 
component will need additional native functions not listed above.

1. Be aware that the order of arguments may be different on different platforms. For example, the function 
memset takes arguments memset(location, value, count). The corresponding PalmOS function is 
MemSet(location, count, value). 
14 KVM Porting Guide • May 19, 2000



CHAPTER 6

Compilation Flags, Definitions and 
Macros

This section lists various C preprocessor flags, definitions and macros that are 
defined VmCommon/h/main.h. Understanding the meaning of these flags helps you 
in porting efforts, so please read the documentation below and in 
VmCommon/h/main.h. 

Note – Rather than changing the values provided in VmCommon/h/main.h, these 
values should be preferably be overridden in your port-specific machine_md.h file. 

Also note that in our reference implementation, many of these flags are commonly 
overridden from makefiles.

For each definition, we give a brief summary and its default definition. These flags 
and macros are documented also in VmCommon/h/main.h.

6.1 General compilation options
The following definitions control the general platform-dependent compiler options 
that you must set before starting your porting efforts. Incorrect settings typically 
cause the virtual machine to malfunction.

#define COMPILER_SUPPORTS_LONG 1

Turn this flag on if your compiler has support for long (64 bit) integers.

#define NEED_LONG_ALIGNMENT 0

Instructs the KVM to know that your host operating system and compiler 
generally assume all 64-bit integers to be aligned on eight-byte boundaries.
15



#define NEED_DOUBLE_ALIGNMENT 0

Instructs the KVM to know that your host operating system and compiler 
generally assumes all double floating point numbers to be aligned on eight-byte 
boundaries (this flag is meaningful only if floating point support is turned on.)

Additional notes. The compiler generates better code if it knows the “endianness” of 
your machine. You should set one of the following two variables to “1” in your 
machine-specific header file. 

#define BIG_ENDIAN 0
#define LITTLE_ENDIAN 0

Also note that if your compiler supports 64-bit integer arithmetic and you have set 
the flag

#define COMPILER_SUPPORTS_LONG 1

you should supply definitions for the types long64 and ulong64. If your compiler 
does not support 64-bit integers (or you have set the flag to 0 for some other reason), 
structure definitions of these two types are created for you automatically. See 
Chapter 9 for more details.

6.2 General system configuration options
The following definitions allow you to control which components and features to 
include in your port.

#define INCLUDE_ALL_CLASSES 1

Includes or excludes non-CLDC classes from the target system. Turning this 
option on also includes those components (e.g., graphics support, network 
protocol implementations) that are not part of the CLDC Specification.

#define IMPLEMENTS_FLOAT 0

Turns floating point support in KVM on or off. Should be off in CLDC-compliant 
implementations.

#define USES_CLASSPATH 1

Turns CLASSPATH support on or off. If this option is turned on, KVM uses the 
host system environment variable CLASSPATH to determine the location of Java 
class files.

#define PATH_SEPARATOR ‘:’
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Path separator character used in CLASSPATH. This definition is meaningful only 
when utilizing the USES_CLASSPATH option.

#define ROMIZING 1

Turns class prelinking/preloading (JavaCodeCompact) support on or off. If this 
option is turned on, KVM prelinks all the system classes directly in the virtual 
machine, speeding up application startup considerably. Refer to Chapter 13 for 
details.

#define USE_JAM 1

Includes or excludes the optional Java Application Manager (JAM) component in 
the virtual machine. Refer to Chapter 14 for details.

#define ASYNCHRONOUS_NATIVE_FUNCTIONS 0

Instructs the KVM to know whether asynchronous native functions are used or 
not. Refer to Section 10.3, “Asynchronous native methods” and Chapter 11 for 
details.

6.3 Palm-specific system configuration 
options
The following definitions allow you to control certain Palm-specific system 
configuration options. All these features were originally designed for the Palm 
version of KVM, but they may be useful as a starting point for certain ports.

#define USESTATIC 0

Instructs the KVM to use a Palm-specific optization in which certain immutable 
runtime data structures are moved from “dynamic RAM” to “storage RAM” to 
conserve Java heap space. A fake implementation of this mechanism is available 
also for the Windows and Solaris versions of KVM (for debugging purposes.)

#define CHUNKY_HEAP 0

Instructs the KVM to use an optimization which allows the KVM to allocate the 
Java heap in multiple chunks or segments. This makes it possible for the virtual 
machine to allocate more heap space on certain platforms such as the Palm.

#define RELOCATABLE_ROM 0

Instructs the KVM to use an optimization in which the prelinked system classes 
are stored using a relocatable (movable) representation. This allows romized 
(JavaCodeCompacted) system classes to be stored in devices such as the Palm.
Chapter 6 Compilation Flags, Definitions and Macros 17



6.4 Memory allocation settings
The following definitions affect the amount of memory KVM allocates.

#define MAXIMUMHEAPSIZE 65024 /* 0xFE00 */

The Java heap size that KVM allocates upon virtual machine startup. 

#define INLINECACHESIZE 40

The size of a special inline cache area that KVM reserves upon virtual machine 
startup if the ENABLEFASTBYTECODES option is turned on. The size is 
expressed as a number of inline cache entries (each entry requires 12-16 bytes 
depending on your target platform.)

#define STACKCHUNKSIZE 64

The execution stacks of Java threads inside the KVM grow and shrink 
automatically as necessary. This value defines the default size of a new stack 
frame chunk when more space is needed.

#define STRINGBUFFERSIZE 512

The size (in bytes) of a statically allocated area that the virtual machine uses 
internally in certain string operations.

Note – As a general principle, KVM allocates all the memory it needs upon virtual 
machine startup. At runtime, all the memory is allocated inside the preallocated 
areas. Of course, the situation changes if the virtual machine calls host-system 
specific native functions (e.g., graphics functions) that perform dynamic memory 
allocation outside the Java heap.

6.5 Garbage collection options
The following options allow you to improve the precision of the conservative 
garbage collector. Read the documentation in VmCommon/h/garbage.h and 
VmCommon/h/main.h for further information.

#define SAFEGARBAGECOLLECTION 1
#define TESTNONOBJECT_DEPTH 3
18 KVM Porting Guide • May 19, 2000



The following option, if set to a non-zero value, causes a garbage collection to occur 
on every allocation. This makes it easier to find garbage collection problems.

#define EXCESSIVE_GARBAGE_COLLECTION 0

Note – We are planning to implement a new garbage collector in a later version of 
the KVM. The options above are likely to change when the new garbage collector is 
available.

6.6 Interpreter execution options
The following macros allow you to turn on and off certain features controlling 
interpreter execution. The default values for a production release are shown below.

#define ENABLEFASTBYTECODES 1

Turns runtime bytecode replacement and method inline caching on or off. This 
option improves the performance of the virtual machine by about 15-20%, but 
increases the size of the virtual machine by several kilobytes. Note that bytecode 
replacement cannot be done on those target platforms in which bytecodes are 
stored in non-volatile memory (e.g., ROM).

#define VERIFYCONSTANTPOOLINTEGRITY 1

Instructs the virtual machine to verify the types of constant pool entries at 
runtime when performing constant pool lookups. Reduces runtime performance 
slightly, but is generally recommended to be kept on for safety and security 
reasons.

Additional definitions and interpreter macros:

#define BASETIMESLICE 500

The value of this variable determines the basic frequency (as a number of 
bytecodes executed) in which the virtual machine performs thread switching, 
event notification and other periodically needed operations. A smaller number 
reduces event handling and thread switching latency, but causes the interpreter to 
run more slowly.

#define DOUBLE_REMAINDER(x, y) fmod(x,y)

A compiler macro, defined in interpret.h, that is used to find the modulus of 
two floating point numbers.
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#define SLEEP_UNTIL(wakeupTime)

This macro makes the virtual machine sleep until the current time (as indicated 
by the return value of the function CurrentTime_md()) is greater than or equal 
to the wakeup time. The default implementation of SLEEP_UNTIL is a busy loop. 
Most ports should usually provide a more efficient implementation for battery 
conservation reasons. Refer to Section 11.4, “Battery power conservation” for 
further details.

6.7 Debugging and tracing options
KVM includes a large number of useful debugging and tracing functions and 
options to facilitate porting efforts. All these options should be turned off in a 
production release.

6.7.1 Including and excluding debugging code
#define INCLUDEDEBUGCODE 0

Includes a large amount of debugging and logging code that is useful when 
porting the virtual machine to a new platform.

#define ENABLEPROFILING 0

Turns on or off certain profiling features that allow you to monitor virtual 
machine execution and get execution statistics. Turning this option on slows 
down the virtual machine execution speed considerably.

6.7.2 Tracing options
The following options allow you to turn individual execution tracing and printing 
options on or off. All output is printed to stdout. Note that many of the options 
require the INCLUDEDEBUGCODE and/or ENABLEPROFILING options to be turned 
on.

#define TRACEMEMORYALLOCATION 0
#define TRACEGARBAGECOLLECTION 0
#define TRACEGARBAGECOLLECTIONVERBOSE 0
#define TRACECLASSLOADING 0
#define TRACECLASSLOADINGVERBOSE 0
#define TRACETHREADING 0
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#define TRACEBYTECODES 0
#define TRACEMETHODCALLS 0
#define TRACEVERIFIER 0
#define TRACEEXCEPTIONS 0
#define TRACEEVENTS 0
#define TRACEMONITORS 0
#define TRACE_STACK_CHUNKS 0
#define TRACE_FRAMES 0

Additionally, you can control whether the tracing messages printed out are terse or 
more verbose by modifying the following option:

#define TERSE_MESSAGES 0

6.8 Networking and storage options 
(Generic Connections)
The CLDC Specification defines a new Generic Connection framework that is 
intended for supporting networking, storage, resource management and other 
related things in an efficient and extensible fashion. KVM can take advantage of 
some of these mechanisms internally by using the macros defined below.

#define GENERICEVENTS 1

Implements event handling inside the KVM using the generic connection 
mechanism. This is the default mechanism (older event handling code has been 
removed from the virtual machine.)

#define GENERICNETWORK 0
#define GENERICSTORAGE 0

Allows the virtual machine to take advantage of certain networking and storage 
capabilities that have been implemented using the generic connection mechanism. 

6.9 Error handling macros
The interpreter uses code of the form shown in Figure 6-1. 

If there is a call to the macro ERROR_THROW(int), anywhere inside the “normal 
code,” the VM jumps immediately to error handling code. Uses of this macro can be 
nested, either lexically or dynamically. The ERROR_THROW jumps to the innermost 
ERROR_CATCH error handling code.
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By default, this behavior is emulated using setjmp and longjmp. However 
platforms (such as PalmOS) that already provide a similar mechanism should use 
the native mechanism.

6.10 Miscellaneous macros and options
#define UNUSEDPARAMETER(var)

Some functions in the reference implementation take arguments that they do not 
use. Some compilers issue warnings; others do not. For those compilers that do 
issue warnings, they differ in how you indicate that the non-use of the variable is 
intentional and that you do not wish to get a warning. This macro should do 
whatever is necessary to get your compiler to remain quiet.

ERROR_TRY {
normal code

} ERROR_CATCH (error) {
error handling code

} ERROR_END_CATCH
always continue here

FIGURE 6-1 Error handling
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CHAPTER 7

Virtual Machine Startup

Virtual machine startup practices can vary significantly in different KVM ports. By 
default, KVM supports regular command line based Java virtual machine startup 
practices, but the virtual machine can easily be modified for those environments in 
which command line based startup is not desired.

7.1 Command line startup
This subsection describes the virtual machine startup conventions when launching 
KVM from a command line.

The file VmExtra/src/main.c provides a default implementation of main(). The 
virtual machine is called from the command line as follows:

kvm [option]* className [arg]*
where each option is one of

-debug
-verbose
-classpath <list of directories>

The required className argument specifies the class whose method 
static main(String argv[]) is to be called. All arguments beyond the class 
name are uninterpreted strings that are made into a single String[] object and 
passed as the single argument to the main method.

The list of directories above is a single string in which the directories are separated 
by the PATH_SEPARATOR character.

The default implementation of main(int argc, char **argv) calls the function 
StartJVM() with an argv in which all of the options have been removed and an 
argc that has been decremented appropriately.
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7.2 Alternative startup strategies
If your implementation does not start the virtual machine from a command line (e.g., 
if you use a graphical environment for application launching), you must arrange 
your code to call StartJVM() with the appropriate arguments.

7.3 Using a JAM (Java Application Manager)
Many KVM ports run on resource-constrained devices which lack many features 
commonly available in desktop operating systems, e.g., a command line language, 
graphical file manager, or even a file system. To facilitate the porting of KVM to such 
platforms, KVM provides a reference implementation of a facility called JAM (Java 
Application Manager). 

At the compilation level, JAM can be turned on or off by using the flag

#define USE_JAM 0

The JAM reference implementation assumes that applications are available for 
downloading as JAR files by using a network or storage protocol implemented using 
the Generic Connection framework (refer to the CLDC Specification for further 
details.) The JAM reads the contents of the JAR file and an associated descriptor file, 
and launches KVM with the main class as a parameter.

Since the JAM serves as an interface between the host operating system and the 
virtual machine, it can be used, e.g., as a starting point for a device-specific graphical 
Java application management and launching environment (“microbrowser”), or as a 
test harness for virtual machine testing. The JAM reference implementation provides 
a special “-repeat” mode that allows the JAM to run a large number of Java 
applications (e.g., test cases) without having to restart the virtual machine every 
time.

Refer to Chapter 14, “Java Application Manager (JAM),” for further information on 
the JAM.
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CHAPTER 8

Class Loading

The KVM code includes an implementation for reading class files as files in a 
directory, and as entries in a compressed JAR file.

If you need to provide an alternative method for loading class files, you must define 
your own class loading mechanism. The default implementation in 
VmExtra/src/loaderFile.c can be used as a starting point for platform-specific 
implementations.

8.1 Generic interface
You must define the C structure filePointerStruct. The generic code uses the 
definitions:

struct filePointerStruct;
typedef struct filePointerStruct *FILEPOINTER;

without knowing anything about the fields of this structure.

You must also define the following functions:

� void initializeClassPath()
The code must initialize the variable ClassPathTable and any other variables 
needed for file loading. This function only needs to be defined if the preprocess 
constant USES_CLASSPATH has a non-zero value (this is the default). The value in 
ClassPathTable is a root for garbage collection, and must either be NULL or be 
an object allocated from the heap.1

1. In a future release of KVM, this function might be replaced with the more generic 
initializeFileLoading(). The symbol USES_CLASSPATH then will no longer be necessary. The variable 
ClassPathTable will then appear only in generic code.
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The C preprocessor constant PATH_SEPARATOR indicates the character that 
separates directories in the class path. Its default value is ':'. Windows and 
other similarly based implementations need to change this value to ';'.

� FILEPOINTER openClassfile(const char *className)
Open the class file containing the class whose name is className. The variable 
className is a fully qualified class name that use slashes (‘/’) as the package 
separator. 

� unsigned char loadByte(FILEPOINTER ClassFile)
unsigned short loadShort(FILEPOINTER ClassFile)
unsigned long loadCell(FILEPOINTER ClassFile)
Read the next one, two, or four bytes from the class file, and return the result as 
an unsigned 8-bit, unsigned 16-bit, or unsigned 32-bit value. 16- and 32-bit 
quantities in Java class files are always in big-endian format.

� void loadBytes(FILEPOINTER ClassFile, char *buffer, int len)
Load the next len bytes from the class file into the indicated buffer.

� void skipBytes(FILEPOINTER ClassFile, unsigned int len)
Skip the next len bytes in the class file.

� void closeClassfile(FILEPOINTER ClassFile)
Close the indicated class file. Close any system resources (such as file handles or 
database records) associated with the class file.

The class file structure returned by openClassFile must be an object allocated 
from the Java heap.

8.2 JAR file reader 
KVM implementations are required to be able to read class files from compressed 
JAR files. The location of the JAR file(s) is specified in an implementation-dependent 
manner.

Functions are provided in loaderFile.c and in jar.c for decompressing classfile 
entries and resources from a JAR file.

The function 

bool_t findJARDirectories(FILE *jarFile,
unsigned long *localDirectory,
unsigned long *centralDirectory)
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tries to find the local directory and the central directory in the already opened JAR 
file. If successful, it returns TRUE and sets the variables localDirectory and 
centralDirectory to the appropriate values. If it is unable to find these 
directories, it returns FALSE; in this case, the opened file is almost certainly not a jar 
file.

The function 

JAR_DataStreamPtr
loadJARfile(const char *jarFileName,

unsigned long localDirectory,
unsigned long centralDirectory,

const char *fileName)

returns a data structure containing the decompressed contents of the specified 
fileName. It returns NULL if the file name is not found in the Jar file, or if there was 
some problem extracting it.

loadJARfile makes use of a function inflate(). This function can be used to 
decompress anything (including zip file entries) that has been compressed using the 
“deflate” algorithm. 

Normally, inflate() takes the arguments:

bool_t inflate(FILE *compressedData,
int compressedLength,
unsigned char *decompressedData
int decompressedLength)

� compressedData:
a FILE that is positioned to read the first byte of compressed data

� compressedLength:
length of the compressed data

� decompressedData:
a buffer into which to write the result

� decompressedLength:
the length of the decompressed result

Note that both compressedLength and decompressedLength must be exact. The 
inflate algorithm considers it an error if the compressed data isn't exactly 
compressedLength bytes long, or if the decompressed data isn't exactly 
decompressedLength bytes long.

inflate() returns TRUE if it is successful in inflating the data, and FALSE if it finds 
any error. The position of compressedData in the underlying file, and the contents of 
decompressedData are undefined if inflate() returns FALSE.

The inflate() algorithm may allocate memory from the heap. It is the caller's 
responsibility to ensure that the decompressedData array, if it has been allocated 
from the Java heap, is protected from garbage collection. By setting the flag 
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#define JAR_INFLATER_USES_STDIO 0

the first argument to inflate() is instead

bool_t inflate(unsigned char *compressedData, . . . .)

In this case, you must pass an array containing the bytes to be decompressed as the 
first argument.

This option is useful for those ports that do not support I/O, and for which 
downloaded applications are stored in memory. In this case, the caller must ensure 
that the compressedData array is protected from garbage collection.
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CHAPTER 9

64-bit Support

If your platform supports floating-point arithmetic, your compiler must provide 
appropriate support.

We do not require that your compiler support 64-bit arithmetic. However, having a 
64-bit capable compiler makes porting much easier.

9.1 Setup
Your compiler supports 64-bit integers: You should define the types long64 and 
ulong64 in one of your platform-depending include files. The meaning of these two 
types is shown below in Table 9-1.

You should consider setting one of the two compiler constants BIG_ENDIAN or 
LITTLE_ENDIAN to a non-zero value. This is only required if you are using the Java 
Code Compactor, but KVM can produce better code if it knows the endianness of 
your machine.

For example, using the Gnu C compiler or the Solaris C compiler, you would write:
typedef long long long64;
typedef unsigned long long ulong64;

TABLE 9-1 64-bit types

Type Description

long64 A signed 64-bit integer

ulong64 An unsigned 64-bit integer
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Using Microsoft Visual C, you would write:
typedef __int64 long64;
typedef unsigned __int64 ulong64;

Your compiler does not support 64-bit integers1: You must set the preprocessor 
constant COMPILER_SUPPORTS_LONG to zero. You must define exactly one of 
BIG_ENDIAN or LITTLE_ENDIAN2 to have a non-zero value.

The types long64 and ulong64 are defined to be a structure consisting of two 
fields, each an unsigned long word, named high and low. The high field is first if 
your machine is big endian; the low field is first if your machine is little endian.

You must define the functions shown in Table 9-2. If your platform supports floating 
point, you must also define the functions shown in Table 9-3. 

Any of these functions can be implemented as a macro instead.

1. Or your code must be strictly ANSI standard.

2. See Jonathan Swift, Gulliver’s Travels, Part I: A Voyage to Lilliput, for more information on the big-endian, little-
endian controversy.

TABLE 9-2 Implementing longs

Function or Constant Java equivalent

long64 ll_mul(long64 a, long64 b); a * b

long64 ll_div(long64 a, long64 b); a / b

long64 ll_rem(long64 a, long64 b); a % b

long64 ll_shl(long64 a, int b); a << b

long64 ll_shr(long64 a, int b); a >> b

long64 ll_ushr(long64 a, int b); a >>> b

TABLE 9-3 Implementing both longs and floats

Function or Constant Java equivalent

long64 float2ll(float f); (long)f

long64 double2ll(double d); (long)d

float ll2float(long64 a); (float)a

double ll2double(long64 a); (double)a
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9.2 Alignment issues
When an object of Java type long or double is on the Java stack or in the constant 
pool, its address will be a multiple of 4.

Some hardware platforms require that 64-bit types be aligned so that their address is 
a multiple of 8. 

If your platform requires that 64-bit integers be aligned on 8-byte boundaries, set
#define NEED_LONG_ALIGNMENT 1

If your platform requires double-precision floating point numbers be aligned on 8-
byte boundaries, set

#define NEED_DOUBLE_ALIGNMENT 1
The compiler can generates better code when these values are 0.
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CHAPTER 10

Native Code

KVM does not support the Java Native Interface (JNI). Rather, the native code to be 
called from the virtual machine must be linked directly into the virtual machine, and 
must be called using the mechanisms described in this section. 

Information for writing your own native functions for KVM is provided in 
Section 10.2, “Implementing native methods.” 

10.1 Native code lookup tables
As part of the build process, you must build the lookup tables that map methods to 
the corresponding native implementation.

The JavaCodeCompact generates these tables automatically1. You should use this 
utility to generate the lookup tables whether or not you are using the other features 
of JavaCodeCompact.

JavaCodeCompact is more fully described in Chapter 13. The specific details for 
creating the file containing the lookup tables can be found in §13.5.

The name of the C function that implements a native method must be the same 
name that JNI2 would assign to the native method. 

1. Earlier versions required the porter to build these tables by hand. This is no longer required. However it is 
important, now, that the C functions be given the name that JNI would give them.

2. See The Java Native Interface: Programmer’s Guide and Specification (Java Series) by Sheng Liang, (Addison 
Wesley, 1999), for complete information on the JNI naming scheme. This information is available online at 
http://java.sun.com/docs/books/jni/index.html.
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10.2 Implementing native methods
WARNING: You should not write native methods unless you have thoroughly read 
through the implementation and understand its structures. Most of the material in 
this porting guide is moderately straightforward. The material in this subsection is 
not!

The KVM reference implementation does not use JNI for native method calls. Native 
methods must be written extremely carefully. Inattention to detail will cause fatal 
errors in the virtual machine.

10.2.1 Include files
Your code containing native functions should begin with the line

#include <global.h>
which causes all include files that are part of KVM to be included. You might also 
need to #include additional files.

10.2.2 Accessing arguments from native methods
When a native method is called, its arguments are on top of the Java stack. A static 
method’s arguments should be popped from the stack in the reverse order from which 
they were pushed. Figure 10-1 shows an example of this coding style:

Java code:
static native void
drawRectangle(int x, int y, int width, int height);

Native implementation:
static void Java_com_sun_kjava_Graphics_drawRectangle() {

int height = popStack();
int width = popStack();
int y = popStack();
int x = popStack();
windowSystemDrawRectangle(x, y, width, height);

}

FIGURE 10-1 A native method
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An instance method (non-static method) must pop the this argument off the stack 
after it has popped the rest of the arguments. Failing to pop the this argument in a 
native instance method will almost surely cause a fatal error in the virtual machine.

Table 10-1 shows the macros that should be used to pop arguments off the stack:

In earlier versions of KVM, your code would get pointer types off the stack by 
calling popStack(), and then casting the result to the appropriate type. For 
example:

STRING_INSTANCE string = (STRING_INSTANCE)popStack()

This coding style should no longer be used. Instead, you should write:
STRING_INSTANCE string = popStackAsType(STRING_INSTANCE)

10.2.3 Returning a result from a native function
If a native method returns a result, it must push that result onto the stack. The native 
code should use the appropriate macro shown in Table 10-2 to push the result back 
onto the stack:

TABLE 10-1 Macros for popping arguments from the stack

C type Macro for popping

char, byte, int, long popStack()

float popStackAsType(float)

long64, ulong64 popLong()

double popDouble()

pointerType popStackAsType(pointerType)

TABLE 10-2 Macros for pushing arguments onto the stack

C type Macro for pushing

char, byte, int, long pushStack()

float pushStackAsType(float)

long64, ulong64 pushLong()

double pushDouble()

pointerType pushStackAsType(pointerType)
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In earlier versions of KVM, you would push a pointer type onto the stack by 
coercing it to a long, and then pushing that value onto the stack. This practice is 
discouraged.

10.2.4 Shortcuts
Some native code uses the macro topStack instead of popping the last argument 
off the stack. It then sets topStack to the value it wants to return. 

This practice is not encouraged. It should only be used for “one-liners” that access 
the argument and return the value in a single statement. pushStack and popStack 
cannot be used in this case, since C would not guarantee their order of evaluation. 

In general, it is safer to pop the value, perform the calculation, and push the value 
back onto the stack as three separate steps.

In addition, you should no longer coerce the value of topStack to a pointer type, 
nor should you coerce a pointer to long and assign it to topStack. Instead, you 
should use the macro topStackAsType(pointerType). This macro can be used 
both as a value and as the target of an assignment (an lvalue). This macro should 
also be used for accessing and setting float values at the top of the stack.

10.2.5 Callbacks
Native code cannot call back into Java. KVM provides a mechanism by which native 
code can alter the interpreter state to begin executing a new piece of code. Upon 
finishing executing that code, the mechanism can indicate a new C function which 
should be called.

10.2.6 Exception handling in native code
If the native code needs to throw an error or exception, it should call the function

raiseException(string)
where the string argument contains the fully-qualified name (with '/' as the 
package separator) of the exception class or error class.

10.2.7 Useful functions in native code
Other useful functions that a native method might need to call are the following:
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� void fatalError(string)
The code calls this method to indicate that a serious error has occurred. 
The string argument is a brief explanation of the problem. This method does 
not return.

� CLASS getClass(const char *name)
This method returns the class whose name is the indicated argument. You might 
want to coerce the return result to be an INSTANCE_CLASS or an ARRAY_CLASS.

� INSTANCE instantiateString(const char* string)
This method converts the given C string into a Java String.

� char *getStringContents(Instance string)
The instance argument must be a Java string. It is converted into a null-
terminated C string, and returned as the result. 
The string is placed into a global buffer. If your code must hold onto this string 
for any length of time, you must copy the buffer into stack-allocated storage, or 
allocate space from the Java heap.

� INSTANCE instantiate(CLASS class)
Creates a new Java instance of the specified class.

� ARRAY instantiateArray(ARRAY_CLASS arrayType, long length)
Creates a Java array of the specified type and length.

� ARRAY createCharArray(const char* string)
Creates a Java character array from the C string passed as an argument.

� char* mallocBytes(long sizeInBytes)
Allocates a memory block in the garbage-collected heap that is big enough to hold 
sizeInBytes number of bytes. You can create a temporary root (Section 10.2.8, 
“Garbage collection issues”) to prevent the memory block from being garbage-
collected.

10.2.8 Garbage collection issues
The C stack is not scanned when the KVM performs a garbage collection. If your 
native code allocates new Java objects, you must take special precautions to prevent 
your new Java objects from being garbage collected inadvertently. As a general 
guideline, whenever you create a new Java object in native code, you must make the 
pointer to the object visible to the virtual machine before doing any subsequent 
operations that might cause the garbage collector to be called. You have several 
options:

� You can push the object onto the Java stack (using pushStack) before performing 
the operation. You must remember to pop it off the stack afterwards.

� You can create code of the form shown in Figure 10-2 or Figure 10-3. 
� If your code initializes a C variable to point to a Java object at startup, and the 

contents of that variable should never be garbage collected, you can use the code 
shown in Figure 10-4. However, note that there is currently no function for 
removing a variable from the set of global roots.
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Important: If your code needs to allocate two objects in a sequence, it is important to 
protect the first object before allocating the next. Otherwise, a fatal error is likely to 
occur.

Useful hint for debugging native functions: The garbage collector has a special 
mode/flag EXCESSIVE_GARBAGE_COLLECTION that will cause it to garbage 
collect before every memory allocation operation. Turning this mode on is an 
extremely effective technique for finding variables whose value you have forgotten 
to protect. For performance reasons, you should always remember to turn this mode 
off on a production release.

10.2.9 Initialization and reinitialization of global 
variables
Generally, the C language guarantees that all global and static variables are 
initialized to 0 (zero).

START_TEMPORARY_ROOT(var)
;; var will not be garbage collected
code that might garbage collect.

END_TEMPORARY_ROOT

FIGURE 10-2 One temporary root

START_TEMPORARY_ROOTS
MAKE_TEMPORARY_ROOT(var1);
;; var1 will not be garbage collected
code that might garbage collect
MAKE_TEMPORARY_ROOT(var2);
;; neither var1 nor var2 will be garbage collected
more code

END_TEMPORARY_ROOTS

FIGURE 10-3 Multiple temporary roots

variable = <value>
MakeGlobalRoot((cell **)value);

FIGURE 10-4 Creating a global root
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The current implementation is designed to work within an embedded environment. 
For example, on the PalmOS, the user can start the virtual machine, exit a program, 
and then restart the virtual machine with a different set of arguments. There is no re-
initialization of global or static variables between the two runs.

In general, your code cannot assume the initial value of any variable. You have 
several options for determining when it is necessary to perform one-time only 
initialization.

� You can use the function initializeNativeMethods() to either initialize your 
variables, or to set a flag indicating that initialization needs to be performed.

� If a private native method is called as part of static initialization of a class, the 
method’s native implementation will be called the first time the class is used. The 
native implementation can perform any initialization necessary for the class.

� If a variable is part of the global root set (see MakeGlobalRoot() above), its 
value is guaranteed to be 0 the next time that the virtual machine is run.

10.3 Asynchronous native methods
From the operating system viewpoint, KVM is just one process (C program) with 
only one thread of execution. The multithreading capabilities of KVM have been 
implemented entirely in software without utilizing the possible multitasking 
capabilities of the underlying operating system. This approach not only makes the 
virtual machine highly portable and independent of the operating system, but also 
greatly simplifies the virtual machine design and improves the readability of the 
codebase, as the virtual machine designer does not have to worry about mutual 
exclusion and other problems typically associated with multithreaded software.

However, an unfortunate side effect of the approach described above is that by 
default, all native methods in KVM are “blocking.” This means that when a native 
function is called from the virtual machine, all the threads in the VM stop executing 
until the native method completes execution.

As a general guideline, all the native functions called from KVM should be written 
so that they complete their execution as soon as possible. However, in many 
environments this is not desirable. For this reason, KVM includes an implementation 
of “asynchronous native methods” described below.
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10.3.1 Design of asynchronous methods
The standard implementation of KVM runs as a single “task” from the operating 
system’s point of view. If a native method performs an operation that can block, the 
entire KVM blocks.

Asynchronous native methods are intended to solve this problem. When such a 
native method is called, the operation is performed “off-line” in an implementation-
dependent manner. Other Java threads can continue running normally. When the 
native call finishes, the Java thread that originally called the native method 
continues.

To use asynchronous native methods, you must include
#define ASYNCHRONOUS_NATIVE_METHODS 1

in your machine-dependent include file.

Asynchronous native methods cannot be defined in the same file as normal native 
methods. In addition to their normal includes, they must also add the include the 
file async.h.

Asynchronous methods should always have the following form:

ASYNC_FUNCTION_START(functionname)
code

ASYNC_FUNCTION_END

Your code must never use pushStack(), popStack(), topStack, or any macro or 
function that references the stack pointer, the frame pointer, or the current thread. 
Instead, you must use the alternative macros shown in Table 10-3.

In addition, your code must not perform a “return.” It must complete through the 
end, since ASYNC_FUNCTION_END may generate some necessary cleanup code.

TABLE 10-3 Macros used in asynchronous methods

Native function macro Asynchronous native function macro

popStack ASYNC_popStack

pushStack ASYNC_pushStack

popLong ASYNC_popLong

pushLong ASYNC_pushLong

popStackAsType ASYNC_popStackAsType

pushStackAsType ASYNC_pushStackAsType

raiseException ASYNC_raiseException

topStack do not use this macro
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All the macros in Table 10-3 have been designed so that if the symbol 
ASYNCHRONOUS_NATIVE_METHODS is 0, the asynchronous method compiles into a 
normal native method.

If you use asynchronous native methods, you must define the following machine-
specific functions.
� void yield_md()

Pause this operating system task momentarily and allow other tasks to run.
� void CallAsynchronousFunction_md(THREAD, void(f*)(THREAD))

Call the function f, passing it the thread argument as its single argument. The 
function f should be called in an asynchronous manner, such as in a separate task.

� enterSystemCriticalSection
exitSystemCriticalSection
Enter or exit a critical section. The operating system must guarantee that at most 
one operating system task is allowed to be inside the critical section at a time.

10.3.2 Implementation of asynchronous methods
We envision two possible implementations of asynchronous methods.

In the current reference implementation, the function 
CallAsynchronousFunction_md spawns off a separate operating system task 
which performs the indicated function. For example, in a Posix implementation one 
could use pthread_create.

Figure 10-5 below shows one possible implementation of a method
int readBytes(byte[] dst, int offset, int length)

using this style of asynchronous native methods. 

In an alternative implementation, CallAsynchronousFunction_md simply calls 
the function f directly. It assumes that the function f starts an operation, but does 
not wait for its completion. The operating system is required to provide some sort of 
interrupt or callback to indicate when the operation is complete. 

ASYNC_FUNCTION_START(ReadBytes)
long length = ASYNC_popStack();
long offset = ASYNC_popStack()
BYTEARRAY dst = ASYNC_popStackAsType(BYTEARRAY)
INSTANCE instance = ASYHNC_popStackAsType(INSTANCE)/* this*/
long fd = getFD(instance);
length = read(fd, dst->bdata + offset, length);
ASYNC_pushStack((length == 0) ? -1 : length);

ASYNC_FUNCTION_END

FIGURE 10-5 Asynchronous implementation of ReadBytes
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The second implementation is far more operating-system dependent. It might be 
impossible to write native methods than can work both synchronously and 
asynchronously, depending on the value of a flag.

Refer to Section 11.1.4, “Asynchronous notification,” for further information on 
writing asynchronous code.

static void ReadBytes(THREAD thisThread)
{

long length = ASYNC_popStack();
long offset = ASYNC_popStack();
BYTEARRAY dst = ASYNC_popStackAsType(BYTEARRAY);
INSTANCE instance = ASYNC_popStackAsType(INSTANCE);
long fd = getFD(instance);
THREAD thisThread = CurrentThread;
/* Call OS to perform I/O. Perform callback when done. */
AsyncRead(fd, p + offset, length, ReadBytesDone,thisThread);

}

/* Callback function when I/O is finished */
static void ReadBytesDone(void *parm, int length)
{

THREAD thisThread = (THREAD)parm;
ASYNC_pushStack((length == 0) ? -1 : length);
ASYNC_RESUME_THREAD();

}

FIGURE 10-6 Alternative asynchronous implementation of ReadBytes
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CHAPTER 11

Event Handling

11.1 High-level description
There are four ways in which notification and handling of events can be done in 
KVM:

1. Synchronous notification (blocking).

2. Polling in Java code.

3. Polling in the bytecode interpreter.

4. Asynchronous notification.

11.1.1 Synchronous notification (blocking)
By synchronous notification we refer to a situation in which the KVM performs 
event handling by calling a native function directly from the virtual machine. Since 
the KVM has only one physical thread of control inside the virtual machine, no other 
Java threads can be processed while the native function is being executed, and no 
VM system functions like garbage collection can occur either. This is the simplest 
form of event notification, but there are many situations in which this solution is 
quite acceptable, provided that the person designing the native functions is careful 
enough to keep the native functions as short and efficient as possible. 

For instance, writing a datagram into the network can typically be performed 
efficiently using this approach, since typically the datagram is sent to a network 
stack that contains a buffer and the time spent waiting for the event to complete is 
very small. In contrast, reading a datagram is often a very different story, and is 
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often handled better using the other solutions described below. Using a native 
function to wait until a whole datagram is received would block the whole KVM 
while the read operation is in progress.

11.1.2 Polling in Java code
Often event handling can be implemented efficiently using a combination of native 
and Java code. This is a simple way to allow other Java threads to execute while 
waiting for an event to complete. When using this approach, a polling Java loop is 
normally put somewhere in the Java runtime libraries so that the loop is hidden 
from applications. The normal procedure is for the runtime library to initiate a short 
native I/O operation and then repeatedly query the status of the I/O operation until 
it is finished. The polling Java code loop should always contain a call to 
Thread.yield() so that other Java threads can be allowed to run efficiently. 

This method of waiting for event notification is very easy to implement and is free of 
any complexities typically associated with genuinely asynchronous threads (such as 
requiring critical sections, semaphores or monitors.) There are two disadvantages 
with this design. First, CPU cycles are needed to perform the Java-level polling that 
could otherwise be used to run application code (although the overhead is usually 
very small.) Second, due to the interpretation overhead, there may be some extra 
latency associated with event notification (especially if you forget to call 
Thread.yield() in the polling Java code loop.) Again, this overhead is usually 
negligible in all but most time-critical applications.

11.1.3 Polling in the bytecode interpreter
The third approach to implement event handling is to use the bytecode interpreter 
periodically make calls to native event handling operations. This approach is a 
variation of the syncronous notification approach described above. This approach 
has been used extensively in the KVM, e.g., to implement GUI event handling for the 
Palm platform. 

In this approach, a native event handling function is called periodically from the 
interpreter loop. For performance reasons this is not normally done before every 
bytecode, but every few hundred bytecodes or so. This way the cost of performing 
event handling is well amortized. By changing the number of bytecodes executed 
before calling the event handling code, the virtual machine designer can control the 
latency of event delivery versus the CPU time spent looking for a new event. The 
smaller the number, the smaller latency and the larger CPU overhead. A large 
number reduces CPU overhead but increases the latency in event handling.
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The advantage of this approach is that the cost in performance is less than polling in 
Java, and the event notification latency is more predictable and controllable. The 
way this approach works is closely related to asynchronous notification described in 
the next subsection.

11.1.4 Asynchronous notification
The original KVM implementation supported only the three event handling 
implementations discussed above. However, in order to support truly asynchronous 
event handling, some new mechanisms have been introduced recently. 

By asynchronous notification we refer to a situation in which event handling can 
occur in parallel while the virtual machine continues its execution. This is generally 
the most efficient event handling approach and will typically result in a very low 
notification latency. However, this approach generally requires that the underlying 
operating system provides the appropriate facilities for implementing asynchronous 
event handling. Such facilities may not be available in all operating systems. Also, 
this approach is quite a bit more complex to implement, as the virtual machine 
designer must be aware of possible locking and mutual exclusion issues. The 
reference implementation provides some examples that can be used as a starting 
point when implementing more device-specific event handling operations.

The general procedure in asynchronous notification is as follows. A thread calls a 
native function to start an I/O operation. The native code then suspends the thread's 
execution and immediately exits back to the interpreter loop, letting other threads 
continue execution. The interpreter then selects a new thread to run. Some time later 
an asynchronous event occurs and as a result some native code is executed which 
resumes the suspended thread. The interpreter then restarts the execution of the 
thread that had been waiting for an event to occur.

At the implementation level, there are two ways to implement such asynchronous 
notification. One is to use native (operating system) threads, and the other is to use 
some kind of software interrupt, callback routine or a polling routine. 

In the first case, before the native function is called and the Java thread is 
suspended, a new operating system thread is created (or reawakened) and it is this 
thread which enters the native function. There is now an additional native thread of 
control running inside the virtual machine. After the native I/O thread is started, the 
order of execution inside the virtual machine is no longer fully deterministic, but 
depends on the occurrence of external events. Typically, the original thread starts 
executing another Java thread in the interpreter loop, and the new thread starts the 
I/O operation with what is almost always a blocking I/O operation to the operating 
system. 
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It is important to note that the native I/O function will execute out of context 
meaning that the context of the virtual machine will be a different thread. A special 
set of C macros have been written that will hide this fact for the most part, but 
special care should be taken to be sure that no contextual pointers are used in this 
routine. When the blocking call is finished the native I/O thread resumes execution 
and unblocks the Java thread it was representing. The Java thread is then 
rescheduled, and the native I/O thread is either destroyed, or placed in a dormant 
state until it needs to be used again. The Win32 port of the KVM reference 
implementation does this by creating a pool of I/O threads that are reused when 
I/O is to be performed.

The second implementation of asynchronous event handling can be done by 
utilizing callback functions associated with I/O requests. Here the native code is 
entered using the normal interpreter thread, I/O is started and then when the I/O 
operation is completed a callback routine is called by the operating system and the 
Java thread is unsuspended. In this scenario the native code is split into two 
routines, the first being a routine that starts the I/O operation and the second where 
I/Ois completed. In this case the first routine runs in the context of the calling Java 
thread, and the second one does not.

The final, less efficient variation of asynchronous event handling is where the I/O 
routine is polled for completion by the interpreter loop. This is very similar to the 
callback approach except that the second routine is called repeatedly by the 
interpreter to check if the I/O has finished. Eventually when the I/O operation has 
completed the routine unblocks the waiting Java thread. This calling of the native 
code by the interpreter is always done even when there are no pending events, and 
the native code must determine what Java threads should be restarted.

Synchronization issues. It is very important to remember that in the cases where a 
separate native event handling thread or callback routine is used, the code for event 
handling may interrupt the virtual machine at any point. Therefore, the virtual 
machine designer must remember to add critical sections, monitors or semaphores to 
all locations where the program may be manipulating common data structures and a 
possible mutual exclusion problem might occur. The most obvious shared data 
structures are the queues of suspended and active Java threads. These are always 
manipulated using special routine in the virtual machine that is already properly 
synchronized. If there are any other shared data structures they must be 
synchronized in the native code. Failure to do this correctly will produce spurious 
bugs that are very hard to debug.
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11.2 Parameter passing and garbage 
collection issues
When native event handling code is called its parameters will be on the stack for the 
calling Java thread. These are popped off the stack by the native code, and the if 
there is a result value to be returned this is pushed onto the Java stack just prior to 
resuming the execution of the thread. Native parameter passing issues have been 
discussed in Chapter 10.

Because native event handling code can access object memory, there are possible 
garbage collection issues especially when running long, asynchronous I/O 
operations. In general, the garbage collector is prevented from running when there is 
any native code is running. This is a problem when certain long I/O operations are 
performed. The most obvious case is waiting for a incoming network request. To 
solve this problem two functions called startLongIOActivity() and 
endLongIOActivity() are provided. The first allows the garbage collector to 
start, and the second prevents the collector from starting, and waits for it to stop if it 
was running.

It should be noted that if an object reference is passed to a native method, but no 
other reference to it exists in Java code after the call to startLongIOActivity(), 
the object could be reclaimed accidentally by the garbage collector. It is hard to think 
of a realistic scenario where this could occur, but the possibility should be kept in 
mind. A possible example of such code is the following:

native read(byte[]);

void skipBytes(int n) {

read(new byte[n]);

}

Here the only reference to the byte array object exists on the parameter stack to the 
native function. If the native code calls startLongIOActivity() after popping 
the parameter from the stack the array could be garbage collected.

11.3 Implementation in KVM
The event handling implementation in KVM is composed of two main layers that 
both need to be taken into account when porting the KVM onto new hardware 
platforms.
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At the top of the interpreter loop is the following code:

if (isTimeToReschedule()) {

reschedule();

}
The standard rescheduling code performs the following operations.

1. Checks to see if there are any active Java threads and stops the VM if there are 
none.

2. Checks to see if enough time has passed to allow a thread that was waiting for a 
specific time to be restarted. If there is such a thread, it is automatically restarted.

3. Checks to see if any I/O events have occured and where appropriate it allows the 
relevant threads to contend for CPU time

4. Attempts to switch to another thread.

For performance reasons, the operations above are implemented as macros that are, 
by default, defined in VmCommon/h/events.h. It is here that device-specific event 
handling code can be placed. By default, the isTimeToReschedule() macro 
decrements a global counter and tests for it being zero. When it is zero the second 
macro is executed. The idea here is for the reschedule() to be executed only once 
for a fairly large number of bytecode executions. As the name implies 
reschedule()is where the thread context switching is done, if necessary. 

The second layer in event handling implementation is the function 

GetNextKVMEvent(KVMEventType *evt, bool_t forever,
ulong64 waitUntil)

If no event occurs, the function must return FALSE. If an event does occur, the evt 
argument is filled with the details of the event, and the function returns TRUE.

The other arguments are as follows:

� If the forever argument is TRUE, this function should wait for as long as necessary 
for an event to occur (used for battery conservation as described below.) 

� If the forever argument is FALSE, this function should wait until at most 
waitUntil for an event to occur.

Some battery conservation feature have been included in the reference 
implementation of these functions. This is to pass to the event checking function the 
“forever” flag or the maximum wait time. If there are no pending events, the native 
implementation of the GetNextKVMEvent routine can then put the device “to 
sleep” until the next event occurs. Battery conservation issues have been discussed 
in more detail in the next subsection.
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11.4 Battery power conservation
Most KVM target devices are battery-operated, and the manufacturers of these 
devices are typically extremely concerned of excessive battery power consumption. 
To minimize battery usage, KVM is designed to stop the KVM interpreter loop from 
running whenever there are no active Java threads in the virtual machine and when 
the virtual machine is waiting for external events to occur. This requires support 
from the underlying operating system, however.

In order to take advantage of the power conservation features, you must port the 
following low-level event reading function

GetNextKVMEvent(KVMEventType *evt, bool_t forever,
ulong64 waitUntil)

so that it calls the host system specific sleep/hibernation features when the virtual 
machine calls this function with the forever argument set TRUE. The KVM has 
been designed to automatically call this function with the forever argument set 
TRUE if the virtual machine has nothing else to do at the time.

This allows the native implementation of the event reading function to call the 
appropriate device-specific sleep/hibernation features until the next native event 
occurs.

Additionally, the macro SLEEP_UNTIL(wakeupTime) should be defined in such a 
fashion that the target device goes to sleep until wakeupTime milliseconds has 
passed.
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CHAPTER 12

Class File Verification

The existing JDK class file verifier is not suitable for small, resource-constrained 
devices. The JDK verifier takes a minimum of 50K binary code space, and at least 
30K-100K of dynamic RAM at run time. In addition, the CPU power needed to 
perform the iterative dataflow algorithm in the standard JDK verifier can be 
substantial.

We have designed and implemented a new class file verifier that is significantly 
smaller than the existing JDK verifier. The new verifier takes about 10 kilobytes of 
Intel x86 binary code and less than 100 bytes of dynamic RAM at run time for typical 
class files. The verifier performs only a linear scan of the byte code, without the need 
of a costly iterative dataflow algorithm. The new verifier is especially suitable for 
KVM, a small-footprint Java virtual machine for resource-constrained devices.

The new byte code verifier requires all subroutines to be inlined (so that there are no 
jsr and ret instructions) and class files to contain a StackMap attribute. We ship a 
post-javac class file transformation tool, called the preverifier, that inserts this 
attribute into normal class files. A transformed class file is still a valid J2SE class file, 
with an additional attribute that allows verification to be carried out efficiently at 
run time.

The preverifier shipped with the KVM release is a C program that contains code 
extracted from the JDK 1.1.8 virtual machine implementation as well as code 
specifically written for inlining subroutines and inserting the StackMap attribute. 
The program compiles and runs on Windows and Solaris and can be easily ported to 
other development platforms.
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12.1 Using the new verifier

12.1.1 Invoking the preverifier 
The preverification phase is usually performed at application development time on a 
development workstation. The preverifier is used as follows. If, for example, you 
compiled Foo.java using javac before:

javac -classpath kvm/classes Foo.java

Now you need to place the output of javac in a separate directory and then 
transform the resulting class files using the preverifier:

javac -classpath kvm/classes -d tmpdir Foo.java

preverify -classpath kvm/classes -d . tmpdir

The above preverifier command transforms all class files under tmpdir/ and places 
the transformed class files in the current directory (as specified by the -d option).

Makefiles in the KVM distribution invoke the preverifier automatically.

12.2 Preverifier options
The preverifier accepts a number of arguments and options.

-classpath <directories>

� Directories from which classes will be loaded. The directory separator is platform-
specific. On Solaris a colon is used. On Win32 a semicolon is used.

-d <directory>

� The directory in which output classes will be written. The default output 
directory is ./output.

@<filename>

� The name of a text file from which command line arguments will be read.

Command line options are followed by a list of class names and directory names. 
For each class name, the preverifier searches for a matching class file in the classpath 
directories and transforms the class file. For each directory name, the preverifier 
recursively transforms every class file under that directory.
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In the future, javac may be changed so that it no longer generates subroutines and 
generates the appropriate attributes. In that case the preverifier tool will no longer 
be necessary.

12.3 Porting the new verifier
Runtime part. The runtime part of the new verifier does not generally require any 
porting efforts, as it is closely integrated with the rest of the virtual machine, and is 
implemented in portable C code. 

Preverifier part. The preverifier is also written in C. By default, the preverifier is 
available for Windows and Solaris, but it should be relatively easy to compile it to 
run on other operating systems as well.

12.3.1 Compiling the preverifier
The sources for the preverifier are in the directory tools/preverifier/src. 

On Solaris, you can build the preverifier by typing the “gnumake” command in the 
tools/preverifier/build/solaris directory. This compiles and links all .c 
files in the tools/preverifier/src directory, and places the resulting executable 
file in the tools/preverifier/build/solaris directory.

On Win32, you can build the preverifier by loading the workspace file under the 
tools/preverifier/build/win32 directory. This compiles and links all .c files 
in the tools/preverifier/src subdirectory, and places the resulting executable 
file in the tools/preverifier/build/win32/{Debug,Release} directories.
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CHAPTER 13

JavaCodeCompact

KVM supports the JavaCodeCompact (JCC) utility (also known as the class prelinker, 
preloader or ROMizer). This utility allows Java classes to be linked directly in the 
virtual machine, reducing VM startup time considerably.

At the implementation level, the JavaCodeCompact utility combines Java class files 
and produces a C file that can be compiled and linked with the Java virtual machine.

In conventional class loading, you use javac to compile Java source files into Java 
class files. These class files are loaded into a Java system, either individually, or as 
part of a jar archive file. Upon demand, the class loading mechanism resolves 
references to other class definitions.

JavaCodeCompact provides an alternative means of program linking and symbol 
resolution, one that provides a less-flexible model of program building, but which 
helps reduce the VM’s bandwidth and memory requirements.

JavaCodeCompact can:

� combine multiple input files
� determine an object instance’s layout and size
� load only designated class members, discarding others.

13.1 JavaCodeCompact options
JavaCodeCompact accepts a large number of arguments and options. Only the 
options currently supported by KVM are given below.

� filename

Designates the name of a file to be used as input, the contents of which should be 
included in the output. File names with a .class suffix are read as single-class 
files. 
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File names with .jar or .zip suffixes are read as Zip files. Class files contained 
as elements of these files are read. Other elements are silently ignored.

� -o outputfilename

Designates the name of the output file to be produced. In the absence of this 
option, a file is produced with the name ROMjava.c.

� -nq

Prevents JavaCodeCompact from converting the byte codes into their 
“quickened” form. This option is currently required by KVM.

� -classpath path

Specifies the path JavaCodeCompact uses to look up classes. Directories and zip 
files are separated by the delimiting character defined by the Java constant 
java.io.File.pathSeparatorChar. This character is usually a colon on the 
Unix platform, and a semicolon on the Windows platform.

Multiple classpath options are cumulative, and are searched left-to-right. This 
option is used in conjunction with the -c cumulative-linking option, and with the 
-memberlist selective-linking option.

� -memberlist filename

Performs selective loading as directed by the indicated file. This file is an ASCII 
file, as produced by JavaFilter, containing the names of classes and class 
members.

� -v

Turns up the verbosity of the linking process. This option is cumulative. 
Currently up to three levels of verbosity are understood. This option is only of 
interest as a debugging aid.

� -arch Architecture

Specify the architecture for which you are generating a romized image. If you are 
using JavaCodeCompact for the PalmOS, you must specify PALM as the 
architecture; otherwise, you must specify KVM as the architecture.

13.2 Porting JavaCodeCompact
With one exception, JavaCodeCompact outputs C code that is completely platform-
independent.

To initialize a variable that is final static long or final static double, 
JavaCodeCompact performs the appropriate initialization using the two macros:

ROM_STATIC_LONG(high-32-bits, low-32-bits)
ROM_STATIC_DOUBLE(high-32-bits, low-32-bits)
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If you have initialized either the compiler BIG_ENDIAN or LITTLE_ENDIAN to a 
non-zero value, the file src/VmCommon/h/rom.h generates default values for these 
macros. 

If you have not defined BIG_ENDIAN or LITTLE_ENDIAN, or if for some reason the 
macros defined in rom.h are inappropriate for your platform, you should create 
appropriate definitions for ROM_STATIC_LONG and/or ROM_STATIC_DOUBLE in a 
platform-dependent location.

There are no other known platform or port dependencies.

13.3 Compiling JavaCodeCompact
The sources for JavaCodeCompact are in the directory tools/jcc/src. 

On Unix and Windows machines, you compile JavaCodeCompact by typing the 
command “gnumake” in the tools/jcc/ directory. This compiles all .java files in 
the tools/jcc/src subdirectory, and places the resulting compiled file in the 
tools/jcc/classes directory.

You may need to make modifications to this file to indicate the location of your 
javac compiler.

13.4 JavaCodeCompact files
The directory tools/jcc contains a Makefile that shows all the steps necessary to 
execute JavaCodeCompact. This Makefile currently has three targets:

unix
windows
palm

each of which can be used to create all the files necessary for that platform.

On the unix and windows platforms, two files are created:
ROMjavaPlatform.c
nativeFunctionTablePlatform.c

The first file contains the C data structures that correspond to the classes in the zip 
file. The second file contains tables necessary for using native functions (see §10.1). 
This second file should be compiled and linked into KVM whether or not you are 
planning to use the other features of the JavaCodeCompact utility.
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On the Palm, several files are created:
nativeFunctionTablePalm.c
nativeRelocationPalm.c
kvm/VmPilot/build/bin/PalmROM1001.bin
 . . .
kvm/VmPilot/build/bin/PalmROM1010.bin

The file nativeFunctionTable.c again contains tables necessary for using native 
functions. It should be compiled and linked into KVM whether or not you are 
planning to use the other features of the JavaCodeCompact utility. The file 
nativeRelocationPalm.c contains relocation information needed to execute 
native methods. The directory kvm/VmPilot/build/bin contains a set of Palm 
resource files, that must be included in your kvm.prc file.

13.5 Executing JavaCodeCompact
The JavaCodeCompact utility is used to built the platform-specific file 
nativeFunctionTablePlatform.c, which contains tables necessary for calling 
native methods. 

This file must be built even if you are not using the ability of JavaCodeCompact to 
pre-load classes for you. 

If you are not using JavaCodeCompact, you may skip Step 4 below.

The simplest method for using the JavaCodeCompact utility is to either use the 
Makefile provided or to modify it for your platform. The following lists the steps 
that the makefile performs:

1. Compile all the .java files in the api/src directory. The resulting class files are 
verified and merged into a single zip file classes.zip. This zip file is copied to 
the tools/jcc directory.

2. Compile the sources for JCC as described in §13.3 above.

3. Copy classes.zip to classesPlatform.zip. Remove from this platform-
dependent zip file any classes or packages that should not be used on your 
platform.

4a.[Not Palm] Execute your system’s equivalent of the following command in the 
jcc directory:

env CLASSPATH=classes \
JavaCodeCompact -nq -arch KVM \
-o ROMjavaPlatform.c classesPlatform.zip

The “env CLASSPATH-classes” sets an environment variable indicating that 
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the code for executing JavaCodeCompact can be found in the subdirectory called 
classes. Next on the command line is the name of the class whose main method 
is to be executed (JavaCodeCompact), and the arguments to that method.

4b.[Palm] You should instead execute the following two commands:

env CLASSPATH=classes \
JavaCodeCompact -nq -arch Palm \
-o ROMjavaPalm.c classesPalm.zip

env CLASSPATH=classes \
JavaCodeCompact -nq -arch Palm \
-imageAttribute relocating
-o nativeRelocationPalm.c classesPalm.zip

The file nativeRelocationPalm.c is included as a source file in your build. 
The file should be compiled and executed as follows:

cc -I../kvm/VmPilot/h -I../../ikvmvm/VmCommon/h \
-DRELOCATABLE_ROM -DROMIZING ROMjavaPalm.c \
-o ROMjavaPalm

The resulting executable ROMjavaPalm is executed as follows:

ROMjavaPalm ../../kvm/VmPilot/build/bin/PalmROM

creates the resource files in the indicated directory.

5. Execute your system’s equivalent of the following command in the jcc directory:

env CLASSPATH=classes \
JavaCodeCompact -nq -arch KVM_Native
-o nativeFunctionTablePlatform.c classesPlatform.zip

This command creates the file containing the native function tables necessary to 
link native methods to the corresponding C code.

6. Recompile all the sources for KVM. You must ensure that the preprocessor macro 
USING_ROMIZER is set to a non-zero integer value. You must also ensure that the 
file ROMjavaPlatform.c (non Palm) or nativeRelocationPalm.c (Palm) is 
included as one of your source files.

The resulting kvm image will include, pre-loaded, all of the class files that were in 
the original classesPlatform.zip file. 
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13.6 Limitations
The current implementation of JavaCodeCompact requires that the class files that 
you compact constitute a “transitive closure.” If class A is compacted, and class A’s 
constant pool references class B, then class B must also be included as part of the 
compaction.

Class A includes Class B in its constant pool if any of the following conditions are 
true:

� Class A is a direct subclass of class B, or class A directly implements class B.

� Class A creates an instance of class B, or an array of class B.

� Class A calls a method that is defined in class B.

� Class A checks to see if an object is an instance of type B, or casts an object to 
type B.

Note that the following do not cause class B to be included in class A’s constant 
pool. Under certain circumstances, it may be possible to compact A without also 
compacting B.

� Class A has an instance variable of type B

� Class A has a method whose argument or return type includes type B in its 
signature.

� Class A creates an instance of class B using the Class.forName() method.

JavaCodeCompact will fail and give you an error message if you fail to include a 
class file that it requires.
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CHAPTER 14

Java Application Manager (JAM)

A central requirement for KVM in most target devices is to be able to execute 
applications that have been downloaded dynamically from the network. Once 
downloaded, the user commonly wants to use the applications several times before 
deleting them. The process of downloading, installing, inspecting, launching and 
uninstalling of Java applications is referred to generally as application management. In 
typical desktop computing environments, these tasks can be performed by utilizing 
the facilities of the host operating system. However, the situation is very different in 
many small, resource-constrained devices which often lack even basic facilities such 
as a built-in file system.

To facilitate the porting of KVM to small, resource-constrained platforms, KVM 
implementation contains an optional component called Java Application Manager 
(JAM) that can be used as a starting point for machine-specific implementations. 

At the compilation level, JAM can be turned on or off by using the flag

#define USE_JAM 1

This section provides a brief overview of the JAM reference implementation 
provided with KVM. The description below assumes that the target device has some 
kind of a “microbrowser” that can be used for initiating the downloading of 
applications. This microbrowser is commonly provided as part of the native 
computing environment, but it can also be part of the JAM in some implementations.

Note – Currently a JAM implementation is available only for the Windows and 
Solaris versions of KVM.
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14.1 Using the JAM to install applications
Java Application Manager is a native C application that is responsible for 
downloading, installing, inspecting, launching, and uninstalling Java applications. 

From the user’s viewpoint, the JAM is typically used as follows:

1. The user sees an application advertised on a content providers web page.

2. The user selects the tag to install it.

3. The Java application is downloaded and installed.

4. The user runs it.

Here’s a more detailed description:

1. While browsing a content provider web page using a native microbrowser, the 
user sees a description of the Java application in the text of the page, and a 
highlighted tag (or button) that asks them if they want to install the application. 
The tag contains a reference to an application Descriptor File. The Descriptor File, 
typically with a .jam file extension, is a text file consisting of name/value pairs. 
The purpose of this file is to allow the JAM to decide if the Java application the 
user selected can be installed successfully on the device before it tries to 
download it. This saves the user the cost of moving the Java application to the 
device if it cannot be installed. The file is small (several hundred bytes), while a 
Java application is 10-20 kilobytes, so it is much cheaper to download than the 
whole Java application.

2. The user selects the tag to start the installation process. The browser retrieves the 
Descriptor File from the web site.

3. The browser transfers program control to the JAM, passing it the content of the 
descriptor file and the URL for the page it was browsing. 

4. The JAM checks to see if the application is already on the device, and checks its 
version number (see later discussion on the details of application updating.) It 
then reads the JAR-File-Size tag of the Java application to ensure that there is 
room enough on the device to save it.

5. If there is room enough to install the application, the JAM uses the JAR-File-URL 
tag in the descriptor file to get the URL of the JAR file (it may use the base URL 
to the Descriptor File, if the JAR-File-URL tag is a relative URL) and start the 
download process using HTTP. The JAM then stores the JAR file on the device. 

If the download process is interrupted, the JAM discards the partially 
downloaded application, as if the application was never downloaded before.
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6. The JAM adds the application to the list of installed Java applications, and 
registers it with any other native tools as required. The JAM saves the following 
information along with the JAR file:

� name of JAR file,
� absolute URL from where the JAR file was downloaded from,
� main class of the java application,
� name of the application,
� version number of the application.

The absolute URL and the version number are used to uniquely identify an 
application during application update (see next subsection.)

In the reference implementation of the JAM, the user is shown the list of installed 
Java applications on the device, with the just installed application selected for 
execution. 

However, if the Use-Once tag is set to yes, JAM doesn’t add the application to the 
list, and it launches the application immediately. 

7. Any errors encountered during the process must be handled by the JAM. A help 
page URL for the content provider is included in the Descriptor File. The JAM can 
then direct the user to this URL using the native browser. 

14.1.1 Application launching
Here’s a typical use case for launching a Java application:

1. The user is shown a list of Java applications (the user interface design is left up to 
the manufacturer.) In the reference implementation the user is shown the list of 
installed Java applications on the device, with the just-installed application 
selected or highlighted for execution.

2. The user selects the Java application they wish to launch (the user interface 
design is left up to the manufacturer).

3. The JAM executes the KVM with a parameter containing the main class of the 
application. The KVM initializes the main class and starts executing it. As 
additional classes are required for the execution of the application, the KVM uses 
a manufacturer-defined API to unpack and load the class files from the stored 
JAR file.

4. The Java application is displayed on the screen to the user.

5. When the application exits, and if the Use-Once tag in the Descriptor File is set to 
YES, the JAM removes the JAR file.
Chapter 14 Java Application Manager (JAM) 63



14.1.2 Application updating
When the content provider updates an application (for example, to fix bugs or add 
new features), the content provider should do the following:

1. Assign a new version number to the application.

2. Change the Descriptor File of the application to use the new version number.

3. Post the updated JAR file on the content provider's web site, using the same JAR-
File-URL tag as the previous version of the application.

When the user requests the installation of an application, the JAM checks if the 
application's JAR-File-URL is the same as one of the installed applications. If so, and 
the Application-Version of the requested version is newer than the installed version, 
the JAM prompts for user approval before downloading and installing the newer 
version of the application.

The reference implementation uses a string to specify the version number in the 
following format:

Major.Minor[.Micro] (X.X[.X]), where the .Micro portion is optional (it 
defaults to “0”). In addition, each portion of the version number is allowed to a 
maximum of 2 decimal digits (that is, the range is from 0 to 99.)

For example, “1.0.0” can be used to specify the first version of an application. For 
each portion of the version number, leading zeros are not significant. For example, 
“08” is equivalent to “8”. Also, “1.0” is equivalent to “1.0.0”. However, “1.1” is 
equivalent to “1.1.0”, and not “1.0.1”.

In the reference implementation, missing Application-Version tag is assumed to be 
“0.0.0”, which means that any non-zero version number is considered as a newer 
version of the application.

The JAM must ensure that if the application update fails for any reason, the older 
version is left intact on the device. When the update is successful, the older version 
of the application is removed. 
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14.2 JAM components

14.2.1 Security requirements
The JAM, its data, and associated libraries, should be stored securely on the device. 
The device manufacturer must ensure that these components cannot be modified by 
Java applications or other downloadable content.

14.2.2 JAR file
JAR files are a standard feature of Java designed to hold class files and application 
resource data in a compressed format. JAM-compliant JAR files hold exactly one 
Java application and its associated resources. Compressed JAR files reduce the size 
of the application by approximately 40% to 50%. This both reduces the storage 
requirements on the device and reduces the download time for the application. Items 
in the JAR file are unpacked as required by the JAM.

14.2.3 Application Descriptor File 
The Application Descriptor File is a readable text file. It consists of name-value pairs 
that describe the important aspects of its associated Java application. It is referenced 
from a tag on a content provider's web page. It is created and maintained by the Java 
application developer and stored along with its application JAR file on the same web 
site. Developers may create this file with any text editor.

The Descriptor File has the following entries (tag names are case sensitive):

Application-Name

Displayable text, limited to width of screen on the device 

Application-Version

Major.Minor[.Micro] (X.X[.X], where X is a 1 or 2 digit decimal number, 
and the .Micro part is optional) 

KVM-Version
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Comma separated list of KVM version strings as defined in the CLDC 
microedition.configuration system property (see CLDC Specification). 
“CLDC-1.0” is an example of the KVM version string. The items in the list are 
matched against the KVM version string on the device, and an exact match is 
required to execute this application. Any item matching the KVM version string 
on the device satisfies this condition. For example, “CLDC-1.0, CLDC-1.1” runs 
on either version of KVM on the device.

Main-Class

Text name of the application's Main class in standard Java format.

JAR-File-Size

Integer in bytes

JAR-File-URL

Standard URL text format to specify the source URL. If this is a relative URL, then 
the URL to the Descriptor File is the base URL. 

Use-Once

yes/no 

Help-Page-URL

Standard URL text format, used by the browser to access help pages

Additional requirements and restrictions:

� The MIME type for the Descriptor File is application/x-jam and the extension 
is .jam.

� All URLs must point to the same server from which the web page was loaded.
� The JAM must store the Descriptor File contents, in a manufacturer-specific 

format for possible later use (see step 6 on section 1.1.1, and section 1.3 on 
application updating).

The application developer may add any application specific name-value pairs to the 
Descriptor File. This allows the application to be configured at deployment by 
changing the values in the Descriptor File. So, different Descriptor Files could use 
the same application JAR file, with different application parameters.

The format of the tag is a string, but it is recommended that it follow a similar style 
as the tags defined in the above table. The format of the value is an application 
specific string. 

A simple proposed API to retrieve the value via the JAM could be:

public String GetApplicationParameter(String name)
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14.2.4 Network communication 
Whenever a Java application tries to make an HTTP connection, the networking 
implementation should check with the JAM to find the name of the server where the 
application was downloaded. This ensures that the connection is made to the same 
server the application came from. A string comparison is made between the host 
name in the both URLs. 

14.3 Application lifecycle management
The lifecycle of a Java application is defined to be the following:

� The KVM task is launched and instructed to execute the main class of the Java 
application (as described by the Main-Class entry of the Descriptor File.)

� The Java application executes inside the context of the KVM task and responds to 
user events.

� The KVM task exits, either voluntarily, or involuntarily, and terminates the Java 
application.

We use the term task loosely to describe the KVM as a logically distinct execution 
unit. In actual devices, the KVM task can be implemented as a task, a process or a 
thread of the underlying operating system.

We do not specify the API functions for controlling the lifecycle of the KVM, as the 
mechanism is vastly different from platform to platform. Instead, we require all JAM 
implementations to support the following features:

� The JAM implementation must be able to launch the KVM task and start 
executing the main class of the Java application.

� The JAM implementation must be able to forcibly terminate the KVM task, and 
optionally be able to suspend and resume the KVM task.

� The suspension, resumption, and termination of the KVM must be performed by 
the procedures described below.

14.3.1 Termination of the KVM Task
The KVM task can be terminated in two ways: voluntarily or involuntarily.

The application can voluntarily terminate itself by calling the Java method 
System.exit(). Under certain conditions, the JAM may decide to force the KVM 
to terminate. The exact method of triggering forced termination is platform 
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dependent. For example, the JAM may spawn a watchdog thread that wakes up 
after a certain period. If the watchdog thread detects that the KVM has not 
terminated voluntarily, it forces the KVM to terminate.

During forced termination, the JAM actively frees all resources allocated by the KVM 
and terminates the KVM task. The exact procedure is platform dependent. On some 
platforms, calling exit() or kill() may be enough. On other platforms, more 
elaborate clean-up may be required.

14.4 Error handling
The JAM is responsible for handling all errors encountered in installing and 
launching Java applications. The method of handling errors differs from 
implementation to implementation, but the JAM should be able to interact with the 
user to resolve the error if possible. To assist in this the, Descriptor File has a tag 
called Help-Page-URL that is set by the content provider. The JAM may decide that 
under certain conditions, the browser should be invoked and the user sent to the 
help page. The help page could have information that would allow the user to 
contact the content provider for additional assistance. 

14.4.1 Error conditions
The following are a set of possible error conditions and sample messages (in English) 
that can be displayed to describe the error to the user. Manufacturers should design 
the messages so that they are appropriate to their device user interface.

� The user tries to install an application whose size is larger than the total storage 
space available on the device:

"NAMEOFAPP" is too large to run on this device and cannot be installed.

� The user tries to install an application, whose size is larger than the free storage 
space (but smaller than the total storage space) on the device:

There is not enough room to install. Try removing an application and trying 
again.

� The user tries to install an application that is already installed on the device.

“NAMEOFAPP” is already installed. (Soft buttons should be labeled OK and 
Launch. Launch would run the existing application on the device.)

� The user tries to install an application that is not designed for the particular 
device they own.
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“NAMEOFAPP” won't work on this device. Choose another application. (Soft 
button label = Back, Done.)

� The user tries to install an application and the tags describing the Java application 
have a syntax error or an invalid format that results in installation failure.

The installation failed. Contact your ISP for help.

� The user tries to install an application, the URL to the application is incorrect or 
inaccessible, and the application cannot be installed.

The URL for “NAMEOFAPP” is invalid. Contact your ISP for help.

� The user tries to install an application, the application is not the same size as 
described in the Descriptor File. The application should be discarded.

“NAMEOFAPP” does not match its description and may be invalid. Contact 
your ISP for help.

� The user is installing an application. During application download, the 
connection drops, and the application is not loaded into the device successfully.

The connection dropped and the installation did not complete. Please try 
installing again. [Soft button label = Install, Back]

� The user is installing an application whose full URL matches exactly one already 
on the device. 

The JAM should check the version # of both versions and present a decision to 
the user.

� The user tries to run an application and for some reason the application cannot 
launch (for example, the JAM failed to create a new OS task to run the KVM).

Cannot launch “NAMEOFAPP”. Contact your ISP for help.

� The user has been running an application. The application tries to save to the 
scratchpad and fails.

Cannot save data. Contact your ISP for help.

� The user is running an application and it crashes or hangs during execution. 
NOTE: This is a generic error.

“NAMEOFAPP” has unexpectedly quit.
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